محصول | تعداد | ||
---|---|---|---|
0 | (ریال)جمع کل |
باتری لیتیوم یون چیست باتری لیتیوم یون که به انگلیسی با نام های lithium-ion battery یا Li-ion battery شناخته می شود نوعی باتری قابل شارژ است که معمولاً برای وسایل الکترونیکی قابل حمل و ماشین های الکتریکی استفاده می شوند و هر روز محبوبیت آنها برای استفاده در صنایع مختلف منجمله صنایع نظامی و همچنین صنایع هوافضا در حال افزایش است.
ایمنی باتریهای لیتیوم یون در سال های اخیر ایمنی باتریهای لیتیومی به یک معضل جهانی تبدیل شده، چرا که تعداد تلفنهای همراه و سایر دستگاه هایی که از این نوع جدید باتری استفاده می کنند روز به روز در حال افزایش است. بهعلاوه، تولیدکنندگان باتری برای حفظ پول و زمان، از استانداردهای پذیرفتهشده صنعتی تبعیت نمیکنند. این مقاله به شما کمک میکند تا از رخدادهای ناخوشایند مرتبط با باتریهای لیتیومی، که میتواند شما را تحت تأثیر قرار دهد، خودداری کنید.
مواد آندی با ظرفیت بالا برای باتری های لیتیوم یونی حالت جامد این مقاله مروری کوتاه بر پیشرفتهای اخیر باتریهای لیتیوم یونی (LIBها) حالت جامد با آندهایی با ظرفیت بالا است. اگرچه ظرفیت تئوری سیلیکون (Si) فوقالعاده بالا است، تغییر حجم زیاد آن در طول چرخه شارژ و دشارژ یک اشکال جدی برای کاربردهای عملی است. تغییر حجم مواد فعال منجر به تخریب مکانیکی و از دست دادن تماس الکتریکی میشود که در نتیجه منجر به عملکرد چرخهای ضعیفی میشود. اخیرا، تعداد گزارشهای مربوط به آندهای سیلیکون در الکترولیتهای مایع به طور قابل توجهی افزایش یافته است که منجر به درک بهتر عملکرد الکتروشیمیایی این ماده میشود. برای تحقق LIBها با ظرفیت و ایمنی بالا، آندهای آلیاژی با ظرفیت بالا، که در باتریهای حالت جامد استفاده شوند به شدت مورد نیاز هستند. با این حال، در حال حاضر، مطالعات تحقیقاتی آندهایی با ظرفیت بالا با الکترولیتهای جامد نسبت به حجم گسترده گزارشهایی که از الکترولیت مایع استفاده میکنند، کمیاب است. انتخاب الکترولیت جامد همچنین یک عامل کلیدی برای عملکرد پایدار آندهای با ظرفیت بالا در باتریهای حالت جامد است، در حالی که مطالعات قبلی بر روی آندهای سیلیکون، عمدتا بر روی ساخت آندهای توخالی برای کاهش انبساط حجمی آنها متمرکز شدهاند. این مقاله گزارشهایی در مورد خواص چرخه آندهای با ظرفیت بالا در باتریهای حالت جامد و همچنین تشکیل لایه الکترولیت جامد (SEI) در مرز آند-الکترولیتهای جامد ارائه میدهد. پتانسیل آندهای با ظرفیت بالا برای کاربردهای عملی در باتریهای حالت جامد مورد بحث قرار خواهد گرفت.
بررسی کلی باتریهای لیتیوم-یون (بخش دوم) ساختارهای موجود برای سلولهای باتری سلولهای باتری به طور کلی دارای دو ساختار رول شده یا انباشته میباشند. ساختار سلول به ساختار الکترودها و غشای جداکننده و اجزای مورد استفاده در سل بستگی دارد.
بررسی کلی باتریهای لیتیوم-یون(بخش اول) باتریها از سلولهای تکی ساخته میشوند به عنوان مثال باتریهایی که در موبایلها استفاده میشوند عموماً فقط یک سلول دارند در حالیکه در لپ تاپها چندین سلول و در خودروهای الکتریکی، صدها هزار از این سلولها استفاده میشوندکه به صورت موازی یا سری پک شدهاند. بحث مورد نظر ما در این مقاله، موضوع پک کردن باتریها نیست اما به هر حال پکها به لحاظ ویژگیهای الکتریکی، مکانیکی و نرمافزاری بسیار جذاب و جالب توجه هستند که در مقالات بعدی بیشتر به آنها اشاره خواهد شد.هر سلول یک بستهی مهر و موم شده با شرایط و محیط الکتروشیمیایی داخلی مخصوص به خود است که میتواند همانطور که در شکل ۱، مشاهده میشود، به سه شکل استوانهای، پریسماتیک و سلهای کیسهای تولید شود
باتری لیتیومی و هوش مصنوعی (یادگیری ماشین) باتریهای لیتیومی با توجه به کاربرد گسترده در دستگاههای الکترونیکی قابل حمل و خودروهای الکتریکی و شبکه های هوشمند تقاضای زیادی را به همراه داشته اند.اما کشف مواد با عملکرد بالا یکی از چالش های آزمایشگاهی هست که همواره با آزمون و خطا بصورت تجربی حاصل میشود. بنابراین هزینه مواد و صرف زمان زیاد برای یافتن این مواد و روش ها همواره یک چالش حل نشدنی است.با توجه به گسترش علم کامپیوتر و یادگیری ماشین در تمامی زمینه ها، امروزه علوم کامپیوتر در حوزه ذخیره سازهای انرژی از جمله باتری های قابل شارژ و در میان آنها باتری های لیتیومی ورود کرده است.یادگیری ماشین یا به اختصار ML میتواند بطور موثری کشف مواد را تسریع کند و عملکرد آنها را برای باتری های لیتیمی پیش بینی کند که بطور قابل توجهی توسعه این باتری ها را افزایش می دهد.در سال¬های اخیر نمونه های موفق زیادی با استفاده از هوش مصنوعی و یادگیری ماشین وجود داشته است. در این بررسی به روش های اساسی و روش های معرف یادگیری ماشین در باتری ها پرداخته می شود و در نهایت چالش ها و دیدگاه های هوش مصنوعی در این زمینه بررسی خواهد شد.
فناوری بازیابی لیتیوم از آب نمکهای زمین گرمایی لیتیوم جزء اصلی باتریهای با چگالی انرژی بالا است. لیتیوم در سه نوع ذخایر اصلی یافت میشود: آبهای زیرسطحی شور، رسهای دگرسانشده از نظر هیدروترمال و پگماتیتها. منابع تجاری اولیه لیتیوم، ذخایر سنگ سخت در استرالیا و چین و ذخایر آب نمک در آرژانتین، شیلی و چین هستند. ذخایر آب نمک بین 50 تا 75 درصد از تولید لیتیوم جهان را تشکیل میدهد. تنها تولید لیتیوم فعلی در ایالات متحده از عملیات آب نمک در نوادا گزارش شده است. عملیات آب نمک لیتیوم تقریباً 2200 تن کربنات لیتیوم در سال 2020 تولید کرد که تقریباً 20 درصد مصرف داخلی سالانه را نشان میدهد. به عنوان بخشی از مطالعه ژئوویژن وزارت انرژی ایالات متحده، داده های ژئوشیمی از تعدادی منابع منتشر شده و منتشر نشده، از جمله سازمان زمین شناسی ایالات متحده گردآوری شده است، که نمونههایی از بیش از 2000 چاه زمین گرمایی و چشمههای آب گرم را نشان میدهد. از این نمونهها، تقریباً 1200 نمونه غلظت لیتیوم را گزارش کردهاند. بیش از 900 نمونه دارای غلظت لیتیوم کمتر از ppm 1 و تنها 35 نمونه دارای غلظت لیتیوم بیشتر از ppm 20 بودند. همچنین بررسی گستردهای از غلظت لیتیوم آب نمک مرتبط با سیستمهای زمین گرمایی در سراسر اروپا انجام شده است که شش سیستم با غلظت لیتیوم بیشتر از ppm 90 شناسایی شد. ارزیابیها همچنین در ژاپن و نیوزلند نیز ادامه دارد.
معرفی باتریهای لیتیوم-یون فاقد کبالت پس از کشف LiCoO2 (LCO) به عنوان کاتد باتریهای لیتیومی در دهه 1980، این اکسیدهای لایهای باتریهای لیتیوم یونی (LIBs) را قادر ساختند تا دستگاههای الکترونیکی قابل حمل را تغذیه کنند که جرقه انقلاب دیجیتال قرن بیست و یکم را رقم زد. از آن زمان، LiNixMnyCozO2 (NMC) و LiNixCoyAlzO2 (NCA) به عنوان کاتدهای پیشرو برایLIB ها در کاربرد وسایل نقلیه الکتریکی (EV) ظاهر شدند و به اجزای حیاتی در مبارزه با گرمایش جهانی تبدیل شدند. از آنجا که کاتدها جزء مهمی هستند که تا حد زیادی چگالی انرژی و 40 تا 50 درصد از کل هزینه سلول را درLIB ها تعیین میکنند، در نظر گرفتن دقیق عملکرد و هزینه مواد آنها در عملکرد نهایی باتری و حفظ پذیرش EV بسیار مهم است.
باتریهای لیتیوم سولفور چقدر با تجاری سازی فاصله دارند با افزایش تقاضا برای انرژی سبز، توسعه باتریهایی با چگالی انرژی بالا از اهمیت بالایی برخوردار است. باتریهای لیتیوم سولفور از سال ۲۰۰۹ توجه بسیاری را در دانشگاه و صنعت به خود جلب کردهاند. این باتریها در تحقیقات دانشگاهی پیشرفتهای قابل توجهی را در بهبود ظرفیت ویژه، سرعت پذیری و عملکرد نشان دادهاند. ولی زمانی که این استراتژیها به تولید انبوه میرسند، عملکرد بسیار متفاوتی را نشان میدهند که بیانکننده تفاوت قابلتوجهی بین تحقیقات دانشگاهی و تولید صنعتی است. در این بررسی کوتاه، شکاف بین تحقیقات دانشگاهی و تجاری سازی به تفصیل مورد تجزیه و تحلیل قرار میگیرد.
پیشرفتهای اخیر در الکترولیتهای شبه جامد و جامد برای باتریهای لیتیوم-گوگرد باتریهای لیتیوم-گوگرد به دلیل ظرفیت تئوری بالاتر، مقرونبهصرفه بودن و سازگاری با محیطزیست بسیار مورد توجه قرار گرفتهاند. با این وجود، تحقق تجاری باتریهای لیتیوم-گوگرد با موانع مهمی مانند تغییر حجم قابل توجه کاتدهای گوگرد در فرآیندهای ورود و خروج لیتیوم، اثرات شاتل غیرقابل کنترل پلی سولفیدها و مسئله دندریت لیتیوم مواجه است. بر این اساس، باتری لیتیوم-گوگرد مبتنی بر الکترولیتهای حالت جامد برای کاهش مشکلات گفته شده توسعه داده شد. هدف این مقاله ارائه یک مرور کلی از پیشرفتهای اخیر باتریهای لیتیوم-گوگرد حالت جامد با انواع مختلف الکترولیتهای حالت جامد است که عمدتاً شامل سه جنبه است: اصول و وضعیت فعلی باتریهای لیتیوم-گوگرد و چندین الکترولیت حالت جامد پذیرفته شده شامل الکترولیت پلیمری، الکترولیت جامد معدنی و الکترولیت هیبریدی. علاوه بر این، چشم انداز آینده برای باتریهای لیتیوم-گوگرد حالت جامد ارائه میشود.
معایب باتری لیتیومی
سیستم مانیتورینگ باتری لیتیومی نظارت بر باتری لیتیومی یک ضرورت است چراکه مانع شارژ بیشازاندازه میشود:
شارژر باتری لیتیومی باتریهای لیتیومی حافظه شارژ ندارند درنتیجه مجبور نیستید که قبل از شارژ باتری را کاملاً تخلیه کنید. این باتری میتواند صدها دوره شارژ و تخلیه را تحمل کند. این ویژگیها برای شارژ سریع بین شیفت کارکنان مناسب هستند که شمارا قادر میکند تا تعداد کمتری باتری بخرید و زمان کمتری صرف تعویض باتری کنید.
باتری لیتیومی چگونه کار میکند آند و کاتد، لیتیوم را در خود نگه میدارند. مایع الکترولیتی، یون مثبت لیتیوم را از آند به کاتد منتقل میکند و دوباره به جداکننده بازمیگرداند. حرکت یونهای لیتیوم المنتهای آزاد در آند تولید میکند که یک بار در قطب مثبت ایجاد میکند. جریان الکتریکی از قطب مثبت به قطب منفی منتقل میشود. جداکننده مانع جریان الکترونها در باتری میشود.
نحوه افزایش طول عمر باتری لیتیوم یونی در یکی از مقالات در خصوص باتری های لیتیوم یونی به طور کامل صحبت کردیم و نحوه کارکرد و مزیت های آن را بررسی کردیم حال در این مقاله سعی بر این است که نحوه استفاده درست از این باتری ها را شرح دهیم.
افزایش طول عمر باتری لیتیوم یونی در یکی از مقالات در خصوص باتری های لیتیوم یونی به طور کامل صحبت کردیم و نحوه کارکرد و مزیت های آن را بررسی کردیم حال در این مقاله سعی بر این است که نحوه استفاده درست از این باتری ها را شرح دهیم.
باتری لیتیوم یونی باتری لیتیوم-یون، خانواده ای از باتریهای قابل شارژ است که در آن در زمان تخلیه، یونهای لیتیوم از الکترود منفی به سمت الکترود